#### 717. The Vibration Spectra of Some Monosubstituted Pyridines and Pyridinium Ions.

## By E. Spinner.

The infrared and Raman spectra of the monomethyl-, monocyano-, monochloro-, and monobromo-pyridines, and of their hydrochlorides have been determined. The Raman spectrum of a monosubstituted pyridine resembles that of the corresponding monosubstituted benzene and undergoes only minor modifications on cation formation. Within each series of compounds (i.e., 2-, 3-, and 4-substituted, pyridines and pyridinium ions) the nature of the substituent has only a minor effect on the greater part of the spectrum; these effects are summarised. Band assignments are made as far as practicable.

THIS extension of earlier work <sup>1,2</sup> on the vibration spectra of some substituted pyridinium ions was undertaken in order to ascertain the influence of the mass, and of the electronic effect of the substituent, on the vibration spectrum. The vibration spectra of pyridine and its deuterio-derivatives have been studied in detail 3-5 and band assignments have been made.<sup>3-6</sup> Correlations <sup>7,5</sup> and assignments <sup>8d</sup> are available for the infrared spectra of monosubstituted pyridines; for the methylpyridines,<sup>9a</sup> and the pyridinealdehydes and their ions,<sup>96</sup> Raman spectra also have been determined. Recent studies of the pyridinium ion 1,10 include a proposed complete vibrational assignment.<sup>10c</sup> Band assignments for monosubstituted benzenes have been widely discussed,<sup>11-16</sup> though without complete agreement.

Experimental .-- The methyl-, cyano-, chloro-, and bromo-pyridines used were purified commercial specimens; <sup>17</sup> 4-iodopyridine was obtained as before.<sup>17</sup> Solid hydrochlorides were normally obtained by passing dry hydrogen chloride into ethereal solutions of the pyridines; self-quaternisation by 4-halogenopyridines was avoided by adding the pyridine in ether (or methanol in the case of 4-iodopyridine) dropwise to ether (or methanol) saturated with hydrogen chloride. The structures of the halogenopyridine salts were confirmed by analysis.

The infrared and Raman spectra of the methyl-, chloro-, and bromo-pyridines, and of 2-cyanopyridine, were obtained for the pure liquids. The infrared spectra of 3- and 4-cyanoand 4-iodo-pyridine, and of all the hydrochlorides, were obtained for dispersions of the solids in potassium bromide. The Raman spectrum of 3-cyanopyridine was measured for a 20% aqueous solution, and, for those of the hydrochlorides, solutions of the pyridines in concentrated or saturated aqueous hydrochloric acid were used, the cation concentrations being

Spinner, J., 1960, 1226.
 (a) Spinner and White, J., 1962, 3115; Spinner, J., 1962, (b) 3119, (c) 3127.
 Corrsin, Fax, and Lord, J. Chem. Phys., 1953, 21, 1170.

<sup>4</sup> Andersen, Bak, Broderson, and Rastrup-Andersen, J. Chem. Phys., 1955, 23, 1047.
 <sup>5</sup> (a) Wilmhurst and Bernstein, Canad. J. Chem., 1957, 35, 1183; (b) McCullough, Dousin, Messerly, Hossenlopp, Kincheloe, and Waddington, J. Amer. Chem. Soc., 1957, 79, 4289.

Hossenlopp, Kincheloe, and Waddington, J. Amer. Chem. Soc., 1957, 79, 4289.
<sup>6</sup> Lord, Marston, and Miller, Spectrochim. Acta, 1957, 9, 113.
<sup>7</sup> Cook and Church, J. Phys. Chem., 1957, 61, 458.
<sup>8</sup> (a) Katritzky and Hands, J., 1958, 2202; (b) Katritzky Hands, and Jones, J., 1958, 3165; (c) Katritzky and Gardner, J., 1958, 2198; (d) Katritzky, Quart. Rev., 1959, 13, 353.
<sup>9</sup> (a) Long, Murfin, Hales, and Kynaston, Trans. Favaday Soc., 1957, 53, 1171; (b) Chiorboli, Mirone, and Lorenzelli, Ann. Chim. (Italy), 1958, 48, 355.
<sup>10</sup> (a) Greenwood and Wade, J., 1960, 1130; (b) Gill, Nuttall, Scaife, and Sharp, J. Inorg. Nuclear Chem., 1961, 18, 79; (c) Cook, Canad. J. Chem., 1961, 39, 2009.
<sup>11</sup> Kahovec and Reitz, Monatsh., 1936, 69, 363.

Pitzer and Scott, J. Amer. Chem. Soc., 1943, 65, 803.
 Wilmshurst and Bernstein, Canad. J. Chem., 1957, 35, 911.

<sup>14</sup> Fuson, Garrigou-Lagrange, and Josien, Spectrochim. Acta, 1960, 16, 106.
 <sup>15</sup> Whiffen, J., 1956, 1350; Randle and Whiffen, in "Molecular Spectroscopy," Institute of Petroleum, London, 1955, p. 111.
 <sup>16</sup> Green, (a) J., 1961, 2236; (b) Spectrochim. Acta, 1961, 17, 607; (c) Spectrochim. Acta, 1962, 18, 39.
 <sup>17</sup> Spinner, preceding paper.

40---50% except for 4-chloro- (33%) and 2- and 4-cyano-pyridine (22%). The 2- and 4-halogenopyridines were dissolved in the hydrochloric acid cautiously and with good cooling, and the solutions obtained were stable. 4-Cyanopyridine in hydrochloric acid, however, slowly undergoes hydrolysis under the conditions used, and 2-cyanopyridine does so more rapidly (half-reaction time,  $\sim 8$  hr.); the Raman band intensities obtained for these compounds are therefore less accurate. This applies also to 2-bromopyridine, which darkens upon irradiation.

Infrared and Raman spectra were determined as before.<sup>2a</sup> The exciting mercury radiation used for the latter was not entirely monochromatic, but contained, in addition to the main line at 4358 Å (relative intensity, 100), also lines at 4347.5 (~5), 4339 (~2), 4078 (~1), and 4047 Å (~4). Appropriate subtractions from the observed Raman spectra were therefore made at -57, -101, -1578, and -1768 cm.<sup>-1</sup> from strong Raman bands. (This had not been done in the author's previous work.<sup>1,2,18</sup>)

## NOTATION AND BAND ASSIGNMENTS

Nomenclature in Description of Vibrations.— $\alpha$ -,  $\beta$ -, and  $\gamma$ -substituted pyridines have the same symmetries as ortho-, meta-, and para-disubstituted benzenes, respectively, and will perform the same CH vibrations as the latter. In the pyridinium ions the symmetries remain unchanged, but coupling is possible between N<sup>+</sup>H and CH in-plane bending and conceivable between N<sup>+</sup>H and CH out-of-plane bending; where such coupling occurs the vibrations concerned will be essentially like their counterparts in the corresponding monosubstituted benzene.

Various conflicting systems of numbering or lettering are in use for describing the fundamental modes of vibration in monosubstituted  $^{12,14,15}$  and disubstituted  $^{16,19,20}$  benzenes. The modes of ring vibration are essentially the same in a substituted benzene or pyridine (or pyridinium ion) as in benzene itself, and, for these, the now almost universally accepted system of numbering the benzene vibrations (due to Wilson  $^{21}$  and depicted in ref. 6) can be used  $^{6,12,14,16,20}$  without modification; this will be done here. For the CH and substituent vibrations the numbering system must be modified.

The notation here used for these, which is shown in Table 1, has been chosen to preserve the maximum similarity between identically numbered vibrations for benzene, its derivatives, pyridines, etc.; symmetry considerations are disregarded (*e.g.*, 2, 3, and 11 always refer to the all-in-phase vibrations). Substituent vibrations are described as such and are *not* allocated redundant vibration numbers \* (they have no counterparts in the case of benzene);  $C_{ar}$ -substituent stretching will be denoted by "S," for brevity. For 1,3-disubstituted compounds there are two possibilities: (*a*) all four hydrogen atoms vibrate in unison; (*b*) the 4-, 5-, and 6-hydrogen atoms vibrate in unison, but the 2-hydrogen atom vibrates essentially independently; in the present work (*a*) is assumed to be the case.

Band Assignments.—In the spectra assembled in Table 2 many bands are readily assigned, at least by analogy with the vibration spectra of related compounds; others are assigned tentatively, the assignments made by Lord, Marston, and Miller<sup>6</sup> for the deuteriopyridines being assumed to be correct. No assignments are attempted for CH stretching vibrations.

High-frequency Skeletal Stretching Vibrations.—For both neutral pyridines and ions, vibration 8a is readily located by its high intensity in the Raman spectrum. It has been assumed that the frequency of 19a is always higher than that of 19b, but the evidence on this point is not conclusive.  $v_{14}$  has been placed <sup>6</sup> near 1350 cm.<sup>-1</sup> for the deuteriopyridines but cannot be located for the substituted derivatives. The 2-substituted pyridinium

- <sup>20</sup> Garrigou-Lagrange, Lebas, and Josien, Spectrochim. Acta, 1958, 12, 305.
- <sup>21</sup> Wilson, Phys. Rev., 1934, **45**, 706. **6** I

<sup>\*</sup> This avoids confusion; e.g., the C-D stretching vibration has been numbered <sup>6</sup> 20a, 7b, and 13 in 2-, 3-, and 4-deuteriopyridine, respectively.

<sup>&</sup>lt;sup>18</sup> Spinner, J., 1960, 1232.

<sup>&</sup>lt;sup>19</sup> Stojiljkovic and Whiffen, Spectrochim. Acta, 1958, 12, 47, 57.

## TABLE 1.

System adopted for numbering the CH vibrations in mono- and di-substituted benzenes and related compounds.\*

| Mono                 | +                                       | +/                                  | +/+                  | +/            | +/_+       |              |
|----------------------|-----------------------------------------|-------------------------------------|----------------------|---------------|------------|--------------|
| Vibration †          | +                                       | +                                   | -\                   |               | -\         | Dodundant    |
| CH st                | 2                                       | 20b                                 | 20a                  | 0<br>7b       | 13         | Ta           |
| CH ip be             | 3                                       | 18a                                 | 18b                  | 9a            | 15         | 9b           |
| CH op be             |                                         | 10a                                 |                      | 17a           | Ð          | 170          |
| 1,4- <i>D1</i>       | +++++++++++++++++++++++++++++++++++++++ | +                                   | + ++++               | + - +         | Red        | undant       |
| CH st                | 2                                       | 20b                                 | 13                   | 7b            | 7a         | 20a          |
| CH ip be             | 3                                       | 18a                                 | 15                   | 9a            | 9b         | 18b          |
| CH op be             | 11                                      | 10a                                 | 5                    | 17a           | 17b        | 100          |
| 1,2- <i>Di</i> -‡    | +                                       | ±                                   | ż                    | +             |            |              |
|                      | +                                       | +                                   | -                    | -             |            |              |
|                      | +                                       | -                                   | -                    | +             |            |              |
|                      | ÷                                       | -                                   | -ř-                  | -             | Redu       | ndant        |
| CH st<br>CH in be    | 2                                       | 20a<br>18b                          | 7a<br>9b             | 13<br>15      | 20b<br>18a | 7b<br>9a     |
| CH op be             | 11                                      | 10b                                 | 17b                  | 5             | 10a<br>10a | 17a          |
| 1,3-Di: All for      | ur hydrogen a                           | atoms move in                       | concert.             |               |            |              |
|                      | *                                       | 0                                   | +                    | _             |            |              |
|                      | +                                       | +                                   | ?0 <u></u> 0         | ? + \ \+      | -          |              |
|                      | $\sim$                                  | $\bigvee$                           |                      | $\bigvee$     |            |              |
|                      | +                                       | 0                                   |                      | <u> </u>      | R          | edundant     |
| CH st                | 2                                       | $20b \equiv 7b$                     | 20a                  | 13 7a         | Chai       |              |
| CH ip be<br>CH op be | 11                                      | $18a \equiv 9a$<br>$10a \equiv 17a$ | 180 < 01 $30 $ $10b$ | 5 90<br>5 17b | Choi       | ce arbitrary |
| 1.3-Di: The 4        | -, 5-, and 6-h                          | vdrogen atoms                       | only move in         | concert.      |            |              |
| - <b>,</b> -         | +                                       | 0                                   | _                    |               |            |              |
|                      | +/+                                     | +/                                  | +/_+                 | R             | trebrube   |              |
|                      |                                         |                                     |                      | automatically | by         | choice       |
| CH st                | $\sim_2$                                | $20b \equiv 7b$                     | $13 \equiv 7a$       | 20a           | 20b        | 7a           |
| CH ip be             | 3                                       | $18a \equiv 9a$                     | $15 \equiv 9b$       | 18b           | 18a        | 9b           |
| CH op be             | 11                                      | $10a \equiv 17a$                    | $5 \equiv 17b$       | 10b           | 10a        | 17b          |

\* This system resembles that used by Lord *et al.*<sup>6</sup> for the diazabenzenes (but not for the mono-deuteriopyridines).  $\dagger + +$  denotes in-phase motion, + - out-of-phase motion, etc., 0 denotes no motion. (N.B. The + and - signs here do not refer solely to out-of-plane bending motions.) st = stretching; ip be = in-plane bending; op be = out-of-plane bending.  $\ddagger$  The vibrations here designated "a" actually possess symmetry "b," and *vice versa* (for pyridazine Lord *et al.*<sup>6</sup> use the reversed designations.) § Neither description is very close, but the set 20a, 18b, and 10b presumably gives the more correct one.

CH op be

 $10a \equiv 17a$ 

ions show five reasonably intense infrared bands in the range 1630-1370 cm.<sup>-1</sup>, and that near 1390 cm.<sup>-1</sup> is tentatively assigned to  $v_{14}$ , as is the band found in the same position for the 4-substituted ions.

The Strong Raman Bands at 980-1070 cm.<sup>-1</sup>.—The band near 1000 cm.<sup>-1</sup> in 2- and 4and near 1040 cm.<sup>-1</sup> in 3-substituted pyridines and pyridinium ions is assigned to ringbreathing  $v_1$ , that near 1040 cm.<sup>-1</sup> in 2-, near 1030 cm.<sup>-1</sup> in 3-, and near 1060 cm.<sup>-1</sup> in 4-substituted compounds to ring deformation  $v_{12}$ . The last band could, instead, be attributed to in-plane CH bending  $v_{18a}$  in 4-,  $v_{18b}$  in 2-, and  $v_{18a} = v_{9a}$  in 3-substituted compounds; however, this band is observed, not only for monosubstituted benzenes and pyridines, but also for pyridine where it is assigned <sup>3</sup> to vibration 12; it should be assigned to the same vibration throughout.

#### Some Monosubstituted Pyridines and Pyridinium Ions. [1963] 3863

CH Out-of-plane Bending Bands.-2-, 3-, and 4-Substituted pyridines show a strong infrared band due to vibration 11 within the ranges <sup>22</sup> expected for 1,2-, 1,3-, and 1,4disubstituted benzenes, respectively, but in the cations some of these bands are displaced outside these ranges. 3-Substituted pyridines, like 1,3-disubstituted benzenes,<sup>22</sup> show a

|                                | 4. Methylpyridine                           |                       |                                             | 4-1                                     | Cvanor                | ovridine               | <b>.</b>                                     | 4-1              | Chlore               | nvridin               | a .                                         | 4-Bromopyridine  |                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |
|--------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------------------------|-----------------------|------------------------|----------------------------------------------|------------------|----------------------|-----------------------|---------------------------------------------|------------------|-------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Assign-                        |                                             |                       | _                                           |                                         |                       | oyanoj                 | <i>y</i> mann                                |                  |                      | omore                 | pyriain                                     | 0                |                                           | Diomo                                               | pyriain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                              |
| ment †<br>8a<br>8b             | Infra<br>1607<br>1561                       | 1.6<br>0.5            | Ram<br>1603<br>1563                         | an<br>30<br>12                          | Infra<br>1595<br>1546 | 0.85                   | Ran                                          | lan              | Infra<br>1565        | ared<br>1.5           | Ram<br>1567                                 | an<br>59<br>50   | Infra<br>1561                             | ared<br>1.5                                         | Ram<br>1561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an<br>33                                                                                       |
| 19a<br>19b                     | 1497<br>1414                                | 0·4<br>0·9            | 1495<br>1411                                | 11<br>6                                 | 1499<br>1415          | $0.75 \\ 0.5 \\ 1.3$   |                                              |                  | 1305<br>1481<br>1404 | 0·8<br>0·9            | $1479 \\ 1403$                              | 7<br>7           | $1479 \\ 1404$                            | 0.8<br>0.85                                         | 1479<br>1404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33<br>3<br>4                                                                                   |
| 3?<br>S/18a I                  | $1289 \\ 1226$                              | 0.01<br>0.5           | $\frac{1281}{1220}$                         | 9<br>46                                 | 1193<br>1239          | 0·3<br>0·45            |                                              |                  | 1316                 | 0-2                   | 1314                                        | 12               | 1313                                      | 0.5                                                 | 1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                              |
| 9a                             | 1212                                        | 0.2                   |                                             |                                         | 1205                  | 0.5                    |                                              |                  | ${1218 \\ 1211}$     | 0.3                   | 1217                                        | 40               | 1217                                      | 0.5                                                 | 1216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31                                                                                             |
| 18a/S<br>12                    | 1071                                        | 0.2                   | 1069                                        | 9                                       | 1111<br>1083          | 0·2<br>0·7             |                                              |                  | 1130<br>1102<br>1062 | 0·4<br>0·6<br>0·5     | $1128 \\ 1101 \\ 1061$                      | $25 \\ 69 \\ 22$ | $1091 \\ 1061$                            | 0·7<br>0·7                                          | $1092 \\ 1063$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $53 \\ 21$                                                                                     |
| 1                              | 1040<br>996<br>971                          | 0·3<br>0·6<br>0·1     | $1041 \\ 995 \\ 973$                        | 4<br>100<br>6                           | 991                   | 0.7                    |                                              |                  | 089                  | 0.3                   | 995<br>983                                  | 100              | 992                                       | 0.1                                                 | 993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                            |
| S/18a II<br>11                 | 800                                         | 1.6                   | 801                                         | <b>7</b> 0                              | 777<br>828            | $1.0 \\ 1.4$           |                                              |                  | 809                  | 1·0                   | 811                                         | 3                | 803                                       | 1.1                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                              |
| S/6a I<br>6b                   | 725                                         | 0.3                   | 669                                         | 29                                      |                       |                        |                                              |                  | 706                  | 1.3                   | 709<br>699                                  | $\frac{45}{51}$  | $\begin{array}{c} 718 \\ 676 \end{array}$ | $\begin{array}{c} 0\cdot 2 \\ 1\cdot 5 \end{array}$ | $723 \\ 678 \\ 660$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2 \\ 25 \\ 27$                                                                                |
| 6a/S<br>16b<br>S/6a II         |                                             |                       | $515 \\ 487$                                | $\frac{25}{8}$                          |                       |                        |                                              |                  |                      |                       | 493<br>414                                  | 7<br>59          |                                           |                                                     | 485<br>314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>70                                                                                        |
| 16a<br>X ip be<br>X op be      |                                             |                       | $345 \\ 214$                                | $5 \\ 13$                               |                       |                        |                                              |                  |                      |                       | $     387 \\     299 \\     194   $         | 5<br>22<br>32    |                                           |                                                     | 254<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13<br>28                                                                                       |
| 4-Methylpyridine hydrochloride |                                             | ide                   |                                             | Cyanoj<br>vdroc                         | pyridin<br>hloride    | e                      | 4-                                           | Chloro<br>hvdroo | opyridin<br>chloride | е                     |                                             | Bromo<br>hvdroc  | pyridin<br>hloride                        | e                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |
| Assign-                        | <b>.</b> .                                  |                       | n                                           |                                         |                       | 1                      | D                                            |                  |                      | ,                     | D                                           |                  | Traffic                                   |                                                     | Dam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
| ment<br>8a                     | 1633                                        | ared<br>0.55          | Ran<br>1638                                 | 1an<br>65                               | 1631                  | 0.55                   | Ran<br>1639                                  | nan<br>79        | 1621                 | area<br>0.9           | Кап<br>1624                                 | 1an<br>61        | 1620                                      | 1.0                                                 | кан<br>1620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1an<br>63                                                                                      |
| 8b<br>19a<br>19b               | $1611 \\ 1504 \\ 1504$                      | $0.4 \\ 0.35 \\ 0.35$ | $1610 \\ 1507 \\ 1507$                      | 9<br>5<br>5                             | 1594<br>1496          | 0·75                   | $\begin{array}{c}1587\\1508\end{array}$      | $\frac{12}{17}$  | 1608<br>1511<br>1480 | $0.8 \\ 0.2 \\ 1.0$   | $1517 \\ 1489$                              | 5<br>5           | $1604 \\ 1508 \\ 1474$                    | 0·7<br>0·3<br>0·7                                   | $1517 \\ 1483$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>5                                                                                         |
| 14?                            | ${ {1377} \\ {1366} }$                      | $0.2 \\ 0.2$          | 1308                                        | 36                                      | 1362                  | $\hat{0}\cdot\hat{1}5$ | 1358                                         | 17               | 1364                 | $\hat{0}\cdot\hat{3}$ | 1374                                        | 9                | 1357                                      | 0.5                                                 | 1369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                             |
| 3                              | 1311                                        | 0.4                   | 1326                                        | 9                                       | 1335<br>1299          | $0.45 \\ 0.6$          |                                              |                  | 1327                 | 0.2                   | 1321                                        | 7                | 1320                                      | 0.3                                                 | 1327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                              |
| N+H ip be<br>S/18a I           | $\begin{array}{c} 1259 \\ 1220 \end{array}$ | $0.1 \\ 0.05$         | $\begin{array}{c} 1258 \\ 1227 \end{array}$ | $\begin{array}{c} 18 \\ 62 \end{array}$ | 1245<br>1187          | $0.15 \\ 0.1$          | $1246 \\ 1198$                               | $\frac{21}{92}$  | 1244                 | 0.3                   | 1251                                        | 28               | 1243                                      | 0.3                                                 | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31                                                                                             |
| 9a                             | 1200                                        | 0.3                   | 1205                                        | 22                                      | 1232                  | 0.4                    |                                              |                  | 1204<br>1137         | $0.2 \\ 0.1$          | $\begin{array}{c} 1204 \\ 1151 \end{array}$ | $^{12}_{7}$      | 1201                                      | 0.2                                                 | 1204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                             |
| 18a/S                          |                                             |                       |                                             |                                         | 1086                  | 0.2                    |                                              |                  | 1103                 | 0.9                   | 1114                                        | 72               | 1086                                      | 1.0                                                 | 1093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82                                                                                             |
| 12                             | $1069 \\ 1033$                              | $0.1 \\ 0.2$          | 1064                                        | 22                                      | 1056<br>1044          | $0.2 \\ 0.2$           | 1062                                         | 8                | 1052                 | 0.1                   | 1061                                        | 20               | 1051                                      | 0.2                                                 | 1063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                                                                                             |
| 1                              | 1007                                        | 0.1                   | 1011                                        | 100                                     | 1005<br>995           | $0.4 \\ 0.15$          | 1007                                         | 100              | 1008                 | 0.5                   | 1010                                        | 100              | 1007                                      | 0.1                                                 | 1009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                                            |
| S/18a II<br>11<br>S/6a I       | 793                                         | 1.0                   | 806<br>797                                  | $\begin{array}{c} 36 \\ 16 \end{array}$ | 822                   | 1.1                    | 776                                          | 17               | 802                  | $1.8 \\ 0.2$          | 725                                         | 94               | 798                                       | 1.9                                                 | 689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                             |
| 6b<br>6a/S                     |                                             |                       | $\begin{array}{c} 651 \\ 521 \end{array}$   | 42<br>29                                |                       |                        | $\begin{array}{c} 652 \\ 463 \\ \end{array}$ | 29<br>17         | 121                  | 0.7                   | 645                                         | 35               |                                           |                                                     | 644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                             |
| S/6a II<br>X ip be             |                                             |                       | 477<br>351                                  | 7                                       |                       |                        | 549                                          | 17               |                      |                       | 488     427     305     202                 | 6<br>18<br>14    |                                           |                                                     | $475 \\ 328 \\ 257 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 \\ 102 $ | $     \begin{array}{c}       4 \\       16 \\       12 \\       12 \\       12   \end{array} $ |
| ve ob ne                       |                                             |                       | 444                                         | 14                                      | 1                     |                        |                                              |                  | 1                    |                       | 200                                         | 14               | 1                                         |                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                                                             |

## TABLE 2.

Band maxima in vibration spectra.\*

\* Wave numbers are in cm.<sup>-1</sup>; concerning relative band intensities within each spectrum, see footnote a, J., 1962, 3116. (N.B.: these intensities possess no absolute significance.) † See ref. 6 and Table 1 for the numbering of ring and CH vibrations, respectively; st = stretching, be = bending, op = out-of-plane, ip = in-plane; X = substituent; S = Car-X stretching.

<sup>22</sup> Cannon and Sutherland, Spectrochim. Acta, 1951, 4, 373; McMurry and Thornton, Analyt. Chem., 1952, 24, 318.

# TABLE 2. (Continued.)

|         | 3-Methylpyridine |      |       |           |       | 3-Cyanopyridine 3-Chloropyridine |      |     |       |      |      | 3-1       | 3-Bromopyridine |      |      |                |
|---------|------------------|------|-------|-----------|-------|----------------------------------|------|-----|-------|------|------|-----------|-----------------|------|------|----------------|
| Assign- |                  | 1.   |       |           | 1     |                                  |      |     |       |      |      |           | 1               |      |      |                |
| ment    | Infra            | ared | Ram   | an        | Infra | ared                             | Ram  | an‡ | Infra | ared | Ram  | nan       | Infra           | red  | Ram  | nan            |
| 8a      | 1598             | 0.2  | 1594  | <b>26</b> | 1589  | 1.1                              | 1591 | 100 | 1563  | 0.3  | 1565 | 19        | 1560            | 0.15 | 1557 | 22             |
| 8b      | 1579             | 0.55 | 1575  | 14        | 1565  | 0.8                              |      |     | 1572  | 0.7  | 1569 |           | 1571            | 0.35 | 1571 | 9              |
| 19a     | 1481             | 0.6  | 1476  | 6         | 1475  | 0.55                             |      |     | 1468  | 1.0  | 1467 | 3         | 1463            | 0.5  | 1464 | 3              |
| 19b     | 1414             | 0.5  | 1408  | 5         | 1421  | 1.3                              |      |     | 1415  | 1.1  | 1415 | 3         | 1414            | 0.65 | 1413 | 4              |
|         |                  |      |       |           | 1405  | 0.2                              |      |     | 1320  | 0.2  | 1318 | 4         | 1319            | 0.2  | 1320 | 1              |
| S/9a I  | 1228             | 0.1  | 1228  | 20        | 1214  | 0.3                              | 1215 | 40  |       |      |      |           |                 |      |      |                |
| 3?      | 1193             | 0.3  | 1190  | 16        | 1188  | 0.5                              | 1192 | 40  | 1190  | 0.2  | 1191 | 8         | 1190            | 0.1  | 1190 | 9              |
| 18b?    | 1126             | 0.2  | 1127  | 3         |       |                                  |      |     | 1155  | 0.2  |      |           | 1116            | 0.15 | 1118 | $\overline{2}$ |
| 9b?     | 1104             | 0.25 | 1103  | 2         |       |                                  |      |     | 1093  | 0.5  | 1094 | 11        | 10951           |      | 1000 |                |
| 9a/S    |                  |      |       |           | i     |                                  |      |     | 1106  | 1.2  | 1107 | 12        | 1086            | 0.99 | 1086 | 14             |
| 1 '     | 1043             | 0.2  | 1041  | 100       | 1035  | 0.25                             | 1037 | 60  |       |      | 1038 | 100       | 1023            | 0.2  | 1035 | 100            |
| 12      | 1031             | 0.45 | 1029  | 29        | 1024  | 0.8                              | 1031 | 50  |       |      | 1038 | 100       | 1023            | 0.2  | 1035 | 100            |
|         |                  |      |       |           | ]     |                                  |      |     | 1016  | 0.3  | 1018 | 4         | 1007            | 0.7  | 1007 | 2              |
|         | 994              | 0.1  |       |           |       |                                  |      |     |       |      |      |           |                 |      |      |                |
| C/On TT |                  |      | ( 805 | 23        | 1     |                                  |      |     |       |      |      |           | {               |      |      |                |
| 5/9a 11 |                  |      | 1797  | 25        | 780   | 0.2                              | 785  | 20  |       |      |      |           |                 |      |      |                |
| 10b     | 788              | 0.6  | •     |           | 810   | 1.45                             |      |     | 795   | 1.0  | 802  | 1         | 791             | 0.55 | 797  | 1              |
| S/6a I  |                  |      |       |           |       |                                  |      |     | 727   | 0.8  | 729  | <b>20</b> | {               |      | 705  | 20             |
| 11      | 709              | 0.7  | 713   | 1         | 700   | $2 \cdot 4$                      |      | 1   | 700   | 1.4  |      |           | 698             | 0.85 |      |                |
| 6b      |                  |      | 628   | 12        |       |                                  |      |     |       |      | 615  | 6         |                 |      | 613  | 5              |
| 6a/S    |                  |      | 535   | <b>20</b> | ]     |                                  | 474  | 20  |       |      |      |           | 1               |      |      |                |
| 16b     |                  |      |       |           | ]     |                                  |      |     |       |      |      |           |                 |      | 451  | 1              |
| 16a     |                  |      |       |           |       |                                  |      |     |       |      |      |           | 1               |      | 400  | 1              |
| S/6a II |                  |      |       |           |       |                                  |      |     |       |      | 426  | 18        |                 |      | 322  | 44             |
| X ip be |                  |      | 341   | 5         |       |                                  |      |     |       |      | 293  | 6         |                 |      | 248  | 5              |
| X op be |                  |      | 220   | 18        |       |                                  | 169  | 30  |       |      | 199  | 18        | 1               |      | 185  | 25             |

| 3-Methylpyridine hydrochloride |       |      |                | e 3-Cyanopyridine<br>hydrochloride |                          |                                                     |       |      | 3-Chloropyridine<br>hydrochloride |            |                |           | 3-Bromopyridine<br>hydrochloride |              |                |     |  |  |
|--------------------------------|-------|------|----------------|------------------------------------|--------------------------|-----------------------------------------------------|-------|------|-----------------------------------|------------|----------------|-----------|----------------------------------|--------------|----------------|-----|--|--|
| Assign-                        |       |      |                |                                    |                          | . y ar oo.                                          |       |      |                                   | i y ur o o | mornae         |           |                                  | iyuroc.      | noriae         |     |  |  |
| ment                           | Infra | ared | Ram            | nan                                | Infra                    | ared                                                | Ran   | nan  | Infra                             | ared       | Raman          |           | Infrared                         |              | Ram            | an  |  |  |
| 8a                             | 1628  | 0.7  | 1632           | 41                                 | 1630                     | 0.3                                                 | 1634  | 100  | 1616                              | 0.05       | 1622           | 22        | 1615                             | 0.1          | 1619           | 22  |  |  |
| 8b                             | 1610  | 0.6  | $1614 \\ 1578$ | 17                                 | 1598                     | 0.5                                                 | 1605  | 27   | 1597                              | 0.5        | $1606 \\ 1551$ | 75        | 1591                             | 0.3          | $1605 \\ 1542$ | 6   |  |  |
| 19a                            | 1551  | 1.7  | 1070           | Ū                                  | $\big\{{}^{1548}_{1531}$ | $0.7 \\ 0.25$                                       | 1555  | 18   | 1523                              | 1.1        | 1001           | Ū         | 1518                             | 0.8          | 1042           | 5   |  |  |
| 19b                            | 1474  | 0.7  | 1472           | 4                                  | 1464                     | 0.8                                                 |       |      | 1455                              | 0.7        | 1465           | 2         | ${1459 \\ 1449}$                 | $0.2 \\ 0.6$ | 1463           | 2   |  |  |
|                                | 1352  | 0.3  | 1355           | 10                                 | 1349                     | 0.2                                                 | 1340  | 9    | 1355                              | 0.05       | 1347           | 5         | 1342                             | 0.02         | 1342           | 5   |  |  |
|                                | 1315  | 0.3  | -1327          | 8                                  |                          |                                                     |       |      | 1327                              | 0.4        | 1315           | 6         | 1314                             | 0.1          | 1317           | 5   |  |  |
| N+H ip be                      | 1262  | 0.4  | 1267           | 15                                 | 1256                     | 0.1                                                 | 1260  | 18   | 1251                              | 0.6        | 1257           | 13        | 1243                             | 0.4          | 1256           | 11  |  |  |
| S/9a I                         | 1232  | 0.1  | 1234           | 43                                 | 1222                     | $\begin{array}{c} 0\cdot 1 \\ 0\cdot 2 \end{array}$ | 1216  | 86   |                                   |            |                |           |                                  |              |                |     |  |  |
| 3?                             | 1182  | 0.1  | 1184           | <b>20</b>                          | 1190                     | 0.2                                                 | 1189  | 32   | 1183                              | 0.2        | 1187           | 12        | 1175                             | 0.03         | 1188           | 11  |  |  |
| 9a/S                           |       |      |                |                                    |                          |                                                     |       |      | 1118                              | 0.5        | 1124           | <b>23</b> | 1105                             | 0.55         | 1104           | 23  |  |  |
| 9b?                            | 1116  | 0.4  | 1119           | 8                                  | 1119                     | 0.03                                                | 1116  | 12   | 1107                              | 0.6        | 1113           | 8         | 1101                             | 0.3          |                |     |  |  |
| 1                              | 1046  | 0.3  | 1049           | 100                                | 1034                     | 0.2                                                 | 1035  | 96   | 1038                              | 0.1        | 1043           | 100       | 1036                             | 0.1          | 1041           | 100 |  |  |
| 12                             | 1024  | 0.1  | 1033           | 87                                 | 1050                     | 0.12                                                | 1050  | 23   | $1028 \\ 1016$                    | 0·3<br>0·3 | 1029           | 33        | 1012                             | 0.4          | 1032           | 43  |  |  |
|                                | 996   | 0.2  | 987            | 12                                 |                          |                                                     |       |      | 993                               | 0.3        |                |           | 880                              | 0.4          |                |     |  |  |
| S/92 II                        |       |      | 806            | 50                                 | 775                      | 0.15                                                | 776   | 40   | 009                               | 0.2        |                |           | 000                              | 0.4          |                |     |  |  |
| 10b                            | 787   | 1.5  | 798            | 26                                 | 822                      | 0.7                                                 | 811   | - TO | 804                               | 1.7        |                |           | 791                              | 1.0          | 805            | 1   |  |  |
| S/62 T                         | 101   | 10   | 100            | 20                                 | 022                      | 01                                                  | 011   | 0    | 728                               | 0.8        | 732            | 32        | 698                              | 0.15         | 702            | 29  |  |  |
| 11                             | 677   | 1.6  |                |                                    | 675                      | 0.75                                                |       | ļ    | 671                               | 1.4        | 102            | 02        | 668                              | 0.8          | 102            | 20  |  |  |
| ĥ                              | 0     |      | 629            | 30                                 | 0.0                      | 0.0                                                 | 628   | 36   | 0.1                               |            | 20             | 14        | 000                              | 00           | 620            | 15  |  |  |
| 62/5                           |       |      | 534            | 36                                 |                          |                                                     | 472   | 22   |                                   |            | 20             | 11        | 1                                |              | 020            | 10  |  |  |
| our c                          |       |      | 001            | 00                                 |                          |                                                     | c 548 | 14   |                                   |            |                |           |                                  |              | 460            | 2   |  |  |
| 16b                            |       |      |                |                                    |                          |                                                     | 541   | 14   |                                   |            |                |           |                                  |              | 100            | -   |  |  |
| S/6a II                        |       |      |                |                                    |                          |                                                     | ( 011 | ••   |                                   |            | 431            | 16        |                                  |              | 325            | 35  |  |  |
| 16a                            |       |      |                |                                    |                          |                                                     | 396   | 9    |                                   |            | 404            | 4         |                                  |              | 400            | 3   |  |  |
| X ip be                        |       |      | 343            | 8                                  |                          |                                                     |       |      |                                   |            | 297            | 9         | 1                                |              | 253            | 8   |  |  |
| X op be                        |       |      | 226            | 30                                 | 1                        |                                                     | 171   | 32   |                                   |            | 205            | <b>22</b> | 1                                |              | 194            | 30  |  |  |

‡ Owing to low solubility, weak Raman bands could not be detected.

|          | 2-Methy | lpyrie         | line  |              | 2-0   | vanop                             | vridine |     | 2-0   | Chloro | pyridine | Э               | 2-Bromopyridine |             |      |     |  |
|----------|---------|----------------|-------|--------------|-------|-----------------------------------|---------|-----|-------|--------|----------|-----------------|-----------------|-------------|------|-----|--|
| Assign-  |         | 1.             |       |              |       |                                   | •       |     |       |        |          |                 |                 |             |      |     |  |
| ment     | Infra   | $\mathbf{red}$ | Ram   | lan          | Infra | red                               | Ram     | an  | Infra | red    | Ram      | an              | Infra           | red         | Ram  | an  |  |
| 8b       | 1594    | 1.4            | 1592  | 32           | 1597  | 0.2                               | 1598    | 4   | 1     |        | 1576     | 21              | 1570            | 1.0         | 1571 | 18  |  |
| 82       | 1570    | 0.5            | 1570  | 34           | 1580  | 1.0                               | 1579    | 83  | 1573  | 1.4    | 1566     | 25              | 1561            | 0.9         | 1561 | 40  |  |
|          |         | • •            |       | •-           | 1573  | $\overline{0} \cdot \overline{2}$ | 1569    | 39  | 1546  | 0.3    | 1547     | 7               |                 |             |      |     |  |
| 19a      | 1480    | 1.5            | 1478  | 7            | 1462  | 0.8                               | 1465    | 4   | 1453  | 1.1    | 1452     | 5               | 1448            | 1.0         | 1449 | 13  |  |
| 19b      | 1439    | î.ŏ            | 1429  | 11           | 1433  | 0.9                               | 1430    | 13  | 1420  | 1.5    | 1418     | 3               | 1415            | 1.3         | 1415 | 4   |  |
| 3?       | 1297    | 0.6            | 1296  | $\tilde{20}$ | 1287  | 0.3                               | 1289    | 7   | 1286  | 0.4    | 1286     | 9               | 1288            | 0.2         | 1285 | 11  |  |
|          |         |                |       |              | 1249  | 0.2                               | 1252    | 12  | 1237  | 0.03   | 1237     | 6               | 1240            | 0.05        | 1238 | 6   |  |
| S/18b I  | 1239    | 0.2            | 1238  | 50           | 1200  | 0.05                              | 1202    | 61  |       |        |          |                 |                 |             |      |     |  |
| 9b       | 1151    | 0.6            | 1152  | 13           | 1154  | 0.3                               | 1153    | 11  | 1149  | 0.8    | 1148     | 12              | 1148            | 0.2         | 1147 | 10  |  |
| 15?      | 1102    | 0.2            | 1102  | 12           | 1089  | 0.2                               | 1092    | 6   | 1117  | 1.6    | 1116     | 16              | 1106            | $1 \cdot 2$ | 1106 | 10  |  |
| 18b/S    |         |                |       |              |       |                                   |         | -   | 1083  | 0.9    | 1082     | 16              | 1077            | 1.0         | 1077 | 13  |  |
| 12       | 1051    | 0.7            | 1050  | 100          | 1045  | 0.5                               | 1044    | 35  | 1045  | 0.6    | 1043     | 71              | 1042            | 0.4         | 1042 | 70  |  |
| 1        | 998     | 0.5            | 999   | 93           | 992   | 0.9                               | 991     | 100 | 991   | 0.7    | 989      | 100             | 988             | 0.6         | 987  | 100 |  |
|          | 976     | 0.2            | 980   | 14           |       |                                   |         |     | 959   | 0.1    | 960      | 5               |                 |             |      |     |  |
|          | -00     |                | ( 812 | 33           |       |                                   |         |     |       |        |          |                 |                 |             |      |     |  |
| S/186 11 | 798     | 0.5            | 1 800 | 63           |       |                                   | 779     | 30  | 1     |        |          |                 | 1               |             |      |     |  |
| 11       | 753     | 1.5            | 754   | 2            | 779   | 1.3                               |         |     | 763   | 1.6    | 766      | 1               | 758             | 1.0         |      |     |  |
|          | 729     | 0.7            | 730   | 4            | 736   | 0.6                               | 737     | 3   | 1     |        |          | -               | 1               |             |      |     |  |
| S/6a I   |         | •••            |       | -            |       |                                   |         |     | 721   | 1.4    | 726      | 32              | 699             | 1.0         | 699  | 28  |  |
| 6b       |         |                | 628   | 33           |       |                                   | 631     | 14  |       |        | 616      | 18              | 1               |             | 613  | 12  |  |
| 6a/S     |         |                | 546   | 42           | {     |                                   | 477     | 14  | }     |        |          |                 |                 |             |      |     |  |
| 16b      |         |                | 472   | 5            |       |                                   | 550     | 17  |       |        | 482      | 2               | ļ               |             |      |     |  |
| S/6a II  |         |                |       |              |       |                                   |         |     | ļ     |        | 426      | 40              | 1               |             | 313  | 49  |  |
| 16a      |         |                | 406   | 2            | 1     |                                   | 396     | 3   | 1     |        | 371      | 3               | 1               |             |      |     |  |
| X ip be  |         |                | 360   | 5            |       |                                   | 262     | 3   |       |        | 313      | 9               |                 |             | 261  | 5   |  |
| X op be  |         |                | 208   | 46           |       |                                   | 176     | 24  | 1     |        | 188      | $3\overline{5}$ |                 |             | 174  | 36  |  |
| -r       |         |                |       |              | -     |                                   |         |     | -     |        |          |                 | ,               |             |      |     |  |

|                                | 753   | 1.9  | 754  | 2  | 779   | 1.3    |                   |           | 763   | 1.0    | 766      | 1  | 758   | 1.0     |          |
|--------------------------------|-------|------|------|----|-------|--------|-------------------|-----------|-------|--------|----------|----|-------|---------|----------|
|                                | 729   | 0.7  | 730  | 4  | 736   | 0.6    | 737               | 3         |       |        |          |    |       |         |          |
| a I                            |       |      |      |    |       |        |                   |           | 721   | 1.4    | 726      | 32 | 699   | 1.0     | 699      |
|                                |       |      | 628  | 33 |       |        | 631               | 14        |       |        | 616      | 18 |       |         | 613      |
| s                              |       |      | 546  | 42 |       |        | 477               | 14        |       |        |          |    |       |         |          |
| )                              |       |      | 472  | 5  |       |        | 550               | 17        |       |        | 482      | 2  |       |         |          |
| a II                           |       |      |      |    |       |        |                   |           |       |        | 426      | 40 |       |         | 313      |
|                                |       |      | 406  | 2  |       |        | 396               | 3         |       |        | 371      | 3  |       |         |          |
| p be                           |       |      | 360  | 5  |       |        | 262               | 3         |       |        | 313      | 9  |       |         | 261      |
| op be                          |       |      | 208  | 46 |       |        | 176               | 24        |       |        | 188      | 35 |       |         | 174      |
| 2-Methylpyridine hydrochloride |       |      |      |    | 2     | 2-Cyan | opyr <b>i</b> dir | ne .      | 2-    | Chloro | pyridine | e  | 2-3   | Bromo   | pyridine |
|                                |       |      |      |    |       | hydro  | chloride          |           |       | hydroc | hloride  |    | 1     | nydrocl | hloride  |
| ssign-                         |       |      |      |    |       |        |                   |           |       |        |          |    |       |         |          |
| ment                           | Infra | ared | Ram  | an | Infra | ared   | Ram               | an        | Infra | ared   | Ram      | an | Infra | red     | Rama     |
|                                | 1632  | 0.32 | 1633 | 43 | 1615  | 0.2    | 1623              | 98        | 1611  | 0.7    | 1605     | 24 | 1608  | 0·4     | 1596     |
|                                | 1620  | 0.75 |      |    | 1606  | 0.45   | 1610              | 100       | 1586  | 0.4    | 1588     | 20 | 1586  | 0.55    |          |
| L                              | 1538  | 0.25 | 1542 | 9  | 1533  | 0.4    |                   |           | 1520  | 0.4    |          |    | 1519  | 0.3     |          |
| )                              | 1476  | 0.3  |      |    | 1459  | 0.25   | 1464              | <b>24</b> | 1449  | 0.6    | 1456     | 6  | 1445  | 0.4     | 1456     |
|                                |       |      |      |    |       |        |                   |           |       |        |          |    | 1401  | 0.1     | 1400     |

Raman

Assign-ment

 ${\bf X}$  op be

 $\big\{ \begin{array}{c} 358 \\ 218 \\ 210 \end{array} \big\}$ 

7 20 10

|           |      |      | 1.0011 |           | 1    | *1 001 | rtan  | an        |      | ** 0.4 | 1.000 |           |      |      | 1.0011 |     |
|-----------|------|------|--------|-----------|------|--------|-------|-----------|------|--------|-------|-----------|------|------|--------|-----|
| 8a        | 1632 | 0.32 | 1633   | 43        | 1615 | 0.2    | 1623  | 98        | 1611 | 0.7    | 1605  | 24        | 1608 | 0.4  | 1596   | 36  |
| 8b        | 1620 | 0.75 |        |           | 1606 | 0.45   | 1610  | 100       | 1586 | 0.4    | 1588  | <b>20</b> | 1586 | 0.55 |        |     |
| 19a       | 1538 | 0.25 | 1542   | 9         | 1533 | 0.4    |       |           | 1520 | 0.4    |       |           | 1519 | 0.3  |        |     |
| 19b       | 1476 | 0.3  |        |           | 1459 | 0.25   | 1464  | <b>24</b> | 1449 | 0.6    | 1456  | 6         | 1445 | 0.4  | 1456   | 7   |
|           |      |      |        |           |      |        |       |           |      |        |       |           | 1401 | 0.1  | 1400   | 6   |
| 14?       | 1396 | 0.2  | 1399   | <b>25</b> | 1392 | 0.12   | 1396  | 37        | 1371 | 0.4    | 1382  | 4         | 1370 | 0.5  | 1382   | 5   |
| 3?        | 1297 | 0.12 | 1295   | 21        | 1303 | 0.12   | 1307  | 68        | 1909 | 0.9    | 1990  | 10        | 1278 | 0.2  | 1284   | 18  |
|           |      |      |        |           | 1264 | 0.05   | 1264  | <b>23</b> | 1205 | 0.2    | 1209  | 18        | 1266 | 0.12 |        |     |
| N+H ip be |      |      |        |           | 1252 | 0.12   |       |           | 1233 | 0.2    | 1239  | 14        | 1242 | 0.02 | 1239   | 11  |
| S/18b I   | 1257 | 0.04 | 1247   | 56        | 1220 | 0.12   | 1221  | 90        |      |        |       |           |      |      |        |     |
| 9h        | 1164 | 0.15 | 1164   | 14        | 1164 | 0.15   | £1172 | <b>20</b> | 1154 | 0.2    |       |           | 1155 | 0.1  | 1166   | 14  |
|           |      | 0.10 | 1101   |           | 1101 | 0 10   | 1165  | 17        |      |        |       |           |      |      |        |     |
| 18b/S     |      |      |        |           | 1    |        |       |           | 1141 | 0.2    | 1147  | 57        | 1121 | 0.2  | 1126   | 71  |
| 15        | 1105 | 0.05 | 1105   | .9        |      |        |       |           | 1087 | 0.2    | 1089  | 20        | 1083 | 0.1  | 1087   | 18  |
| 12        | 1040 | 0.2  | 1074   | 65        | 1043 | 0.03   | 1042  | 60        | 1033 | 0.1    | 1043  | 100       | 1031 | 0.05 | 1042   | 100 |
| 1         | 1013 | 0.1  | 1015   | 100       | 1004 | 0.5    | 1009  | 80        | 996  | 0.3    | 1002  | 65        | 1015 | 0.2  | 1008   | 78  |
| NT4TT     | 992  | 0.2  | 993    | 20        |      |        |       |           |      |        |       |           | 994  | 0.12 |        |     |
| NTH OP DE | 944  | 0.15 | 000    | 0.9       |      | 0.1    |       |           |      |        |       |           | 1    |      |        |     |
| 5/160 11  | 760  | 0.05 | 800    | 93        | 770  | 0.1    | 111   | 45        |      | 1.05   | 770   |           | 1    | 0.0  |        |     |
| 11        | 109  | 0.7  | 105    | 2         | /91  | 1.9    |       |           | 714  | 1.05   | 112   | 4         | 760  | 0.4  |        |     |
| S/60 I    |      |      |        |           |      |        |       |           | 704  | 0.0    | 794   | 6 K       | 604  | 0.1  | 709    | 67  |
| 6h        |      |      | 698    | 25        |      |        | 690   | 97        | 120  | 0.7    | 691   | 00        | 094  | 0.1  | 619    | 95  |
| B2/S      |      |      | 549    | 19        | 1    |        | 477   | 22        |      |        | 021   | 29        | ]    |      | 010    | 20  |
| 16b       |      |      | 473    | 12        |      |        | 525   |           |      |        | 481   | 6         | 1    |      | 466    | 4   |
| S/6a II   |      |      | 1.0    | Ū         |      |        | 000   | 20        |      |        | 441   | 51        | 1    |      | 329    | 95  |
| 10        |      |      |        |           | 1    |        |       |           |      |        | ( 403 | Â         |      |      | 394    | 5   |
| 16a       |      |      | 396    | 4         |      |        |       |           |      |        | 386   | 4         |      |      | 001    | Ŭ   |
| X ip be   |      |      | 358    | 7         |      |        |       |           |      |        | 316   | 12        |      |      | 265    | 14  |
| Vorha     |      |      | ( 218  | 20        |      |        | 168   | 30        |      |        | 197   | 47        |      |      | 185    | 56  |
| A OD DE   |      |      | <      |           |      |        |       | -         |      |        |       |           | 1    |      |        | - • |

## TABLE 2. (Continued.)

|              |          |                      |                                                            |              |              |              | •              |                                        |              |                 |                       |                         |               |   |
|--------------|----------|----------------------|------------------------------------------------------------|--------------|--------------|--------------|----------------|----------------------------------------|--------------|-----------------|-----------------------|-------------------------|---------------|---|
|              |          | A                    | romatic C-F                                                | I stretchi   | ing fre      | auenci       | es             |                                        | 1            | nfrared<br>over | N+-H st<br>tone?) fre | retching (<br>equencies | and           |   |
|              |          | X·C.H                | N                                                          | 1 30101011   |              | X·C          | H.N+H Cl-      |                                        | ı            | X•Cs            | HAN+H                 | Cl-                     |               |   |
| 2-Me         | 30       | 50 0.2, 3            | 050;§ 3013                                                 | 0.2          | 3045         | 0.25         |                |                                        | 2680         | +2635           | 1.1                   |                         |               |   |
| 2-CN<br>2-Cl | 30<br>30 | $60  0.2 \\ 60  0.2$ |                                                            |              | 3024<br>3075 | $0.2 \\ 0.2$ |                |                                        | 2360<br>2375 | 0.4             | <b>2283</b><br>1939   | 1.3                     |               |   |
| 2-Br         | 30       | 53 0.1               |                                                            |              | 3080         | 0.1          |                |                                        | 2415         | 0.6             |                       |                         |               |   |
| 3-Me<br>3-CN | 30<br>30 | 60 0.35              |                                                            |              | 3035<br>3005 | 0.6          |                |                                        | 2675         | $1.8 \\ 1.5$    | $\frac{2050}{2100}$   | 0.3                     | 4 0.35        | , |
| 3-Cl         | 30       | 46 0.3, 3            | 054 §                                                      |              | 3015         | 0.5          |                |                                        | 2670         | 0.4             | 2530                  | 1.5                     |               |   |
| 4-Me         | 30<br>30 | 42 0.15 3<br>35 0.4  | 000 8                                                      |              | 3061         | $0.4 \\ 0.2$ |                |                                        | 2775<br>2580 | 1.1             | 2035                  | 0.2 196                 | 6 0.2         |   |
| 4-CN<br>4-C1 | 30       | 95 0.15              | 3030<br>057 · \$ 3035                                      | 0.15         | 3060<br>3040 | 0.2          | 3048+8         | 0.35                                   | 2490         | 1.5             | 2083                  | 0.4                     |               |   |
| 4-Br         | 30       | 30 0.3               | 001,3 0000                                                 | 0.5          | 3040         | 0.4          | 3040,8         |                                        | 2625         | +2570           | 1.9                   |                         |               |   |
| 4-I          | 30       | 25 0.1               |                                                            | 1            | 3095         | 0.1          | 3040           | 0 0.15                                 | 2635         | 0.8             |                       |                         |               |   |
|              |          |                      |                                                            | Cyar         | opyric       | lines        |                |                                        | Cyano        | pyridine        | e hydrocl             | hlorides                |               |   |
|              |          |                      | Infi                                                       | rared        | <b>~</b> -   | R            | aman           |                                        | Infrare      | d               | ]                     | Raman                   |               |   |
| 9            | CN       |                      | 0095                                                       | 0.9          | CE           | EN Str       | etching freque | ncies                                  |              |                 | 0054                  | یو ہو                   | 0             |   |
| 3            | -CN      |                      | 2235                                                       | $0.3 \\ 0.5$ |              | 2237<br>2241 | 230<br>250     | 224                                    | 5            | 0.15            | $2254 \\ 2251$        | 55<br>45                | 0             |   |
| 4            | -CN      | •••••                | 2240                                                       | 0.25         |              |              |                | 224                                    | 5            | 0.2             | 2250                  | 23                      | 0             |   |
|              |          |                      |                                                            |              | C-CE         | EN in-p      | plane bending  | bands                                  |              |                 |                       |                         |               |   |
| 2            | -CN      | •••••                |                                                            |              |              | 362          | 6              |                                        |              |                 | 359                   | 1                       | 0             |   |
| 3            | -CIN     | •••••                |                                                            |              |              |              |                | I                                      |              |                 | 309                   |                         | 8             |   |
|              |          |                      | Tet                                                        | Methy        | ylpyrid      | lines        |                |                                        | Methyl       | pyridine        | hydroch               | lorides                 |               |   |
|              |          |                      | Infr                                                       | ared         |              | Ka           | aman           |                                        | Infrare      | 1               | 1                     | Kaman                   |               |   |
|              |          |                      |                                                            | Antis        | symme        | trical       | methyl CH be   | nding ba                               | nds          |                 |                       |                         |               |   |
| 2            | -Me      |                      | $\left. \begin{array}{c} 1459 \\ 1449 \end{array} \right.$ | 0.3<br>0.3   |              | 1461         | 8              | 147                                    | 6            | 0.3             |                       |                         |               |   |
| 3            | -Me      | •••••                | 1459                                                       | 0.25         |              | 1453         | 5              | 144                                    | 5            | 0.1             | 1449                  | 8                       | ;             |   |
| 4            | -Me      |                      | 1444                                                       | 0.2          | - { -        | 1467         | 6<br>7         | 144                                    | 1            | 0.2             | 1441                  | e                       |               |   |
|              |          |                      |                                                            | Sym          | netric       | al meti      | ovl CH bendir  | ng hands                               |              |                 |                       |                         |               |   |
| 2            | -Me      |                      | 1378                                                       | 0.4          | 1001100      | 1377         | 28             | 137                                    | 1            | 0.03            | 1385                  | 3(                      | ,             |   |
| 3            | -Me      | •••••                | 1384                                                       | 0.2          |              | 1380         | 13             | 138                                    | 5            | 0.2             | 1388                  | 24                      |               |   |
| 4            | -Me      |                      | 1380                                                       | 0.3          |              | 1378         | 18             | $\begin{cases} 137 \\ 136 \end{cases}$ | 6            | $0.2 \\ 0.2$    | 1380                  | 30                      | )             |   |
|              |          |                      | Infrared                                                   | spectra      | of 4-io      | donvri       | dine and 4-ior | lopyridin                              | e hvdro      | ochloride       |                       |                         |               |   |
|              |          | F                    | Base                                                       | spectra      | Salt         | dopyn        |                | lopynain                               | o nyaro      | Base            |                       | Sal                     | ŀ             |   |
|              |          | _                    |                                                            |              |              |              | N+H i          | p be                                   |              |                 |                       | 1239                    | 0.1           |   |
|              |          |                      |                                                            |              |              |              | 9a             | •                                      | 1209         | 0               | ·2                    | 1200                    | 0.15          |   |
|              | 8a       | 1563                 | $1 \cdot 2$                                                | 1615         |              | 0.65         | 12?            |                                        | 1037         | 0               |                       | 1009                    | $0.3 \\ 0.15$ |   |
|              | 8b       | 1543<br>1467         | 0.4                                                        | 1601         |              | 0.15         |                |                                        | 987<br>803   | 0               | ·1<br>·0              | 1004                    | 0.4           |   |
|              | 19b      | 1399                 | 0.8                                                        | 1471         |              | 0.45         |                |                                        | 794          | 0               | •4                    | 100                     | 1.0           |   |
|              | 14?      | 1308                 | 0.1                                                        | 1352         |              | 0·25<br>0·1  | S/Bo T         |                                        | 720<br>658   | 0               | ·1<br>·8              | 662                     | 0.09          |   |
|              | 0.       | 1000                 | \$ (                                                       | )bserved     | Rama         | n band       | excited by H   | g line at                              | 4047 Å       | . 0             | ~                     | 002                     | 0.09          |   |
|              |          |                      | J -                                                        |              |              |              |                | ~                                      |              |                 |                       |                         |               |   |

second band, at higher frequencies, here assigned to  $v_{10b}$ . None of the cations shows the pattern observed <sup>22</sup> for monosubstituted benzenes; it is certain for 2- and 4- and probable for 3-substituted pyridinium ions that the N<sup>+</sup>-H bond does not behave like another C-H bond so far as out-of-plane bending is concerned.  $v_5$  cannot be located.

CH *In-plane Bending Bands.*—Assignments to vibrations 3, 9, and 15 are very tentative; concerning vibration 18, see below. As these frequencies change little on cation formation, it now seems that in monosubstituted pyridinium ions the  $N^+$ -H bond does not perform in-plane bending in unison with the C-H bonds.

Substituent-sensitive Vibrations.—While the vibration spectra discussed here are, for the most part, affected only in minor ways by the substituent, some bands that are prominent in the Raman spectrum are strongly influenced by the substituent. In this respect each substituted pyridine and pyridinium ion strongly resembles the corresponding monosubstituted benzene.

It has long been established that in phenyl-X (other than deuteriobenzene) some of the vibrations performed do not correspond exactly to normal modes; instead,<sup>11</sup> one observes six frequencies recognised as "X-sensitive" by Whiffen.<sup>15</sup> The nature of the vibrations involved is to some extent reinterpreted here. The two of lowest frequency are readily assigned \* to out-of-plane and in-plane bending by X, respectively, the latter vibration being mixed somewhat with 16b when an atom in the first row of the Periodic Table is attached to the benzene ring.

The three X-sensitive polarised Raman bands are due to mixed vibrations involving C-X stretching, a vibration in the  $A_1$  class the unperturbed frequency of which is near 1080 cm.<sup>-1</sup>, and 6a; when a first-row element is attached to the benzene ring, C-X stretching (unperturbed frequency near 1090 cm.<sup>-1</sup>) mixes mainly with the aromatic vibration near 1080 cm.<sup>-1</sup>; when a heavier element is attached it mixes mainly with 6a.

The aromatic  $A_1$  vibration involved has often <sup>12,15,16</sup> been considered to be 12; Fuson and his collaborators,<sup>14</sup> on the other hand (and, apparently, also Stephenson *et al.*<sup>23</sup>), propose that it is 1. Though mixing between vibration 1 and C-X stretching undoubtedly occurs in 1,2- and 1,4-disubstituted benzenes in which two first-row elements are attached to the nucleus, and for which neither strong Raman band near 1000 cm.<sup>-1</sup> is observed, it is most unlikely to occur in monosubstituted benzenes, which show both bands.

For reasons given above, the strong Raman band near 1050 cm.<sup>-1</sup> is here assigned to vibration 12, and C-X stretching in monosubstituted benzenes is considered to mix with 18a (indeed, according to the vibration diagram by Lord *et al.*,<sup>6</sup> 18a in benzene, pyridine, and 4-substituted derivatives thereof automatically entails some C-X stretching and would naturally tend to mix with it).

In spectra of 2-substituted pyridines, and even more so of their cations, the X-sensitive frequency in the 1100—1250 cm.<sup>-1</sup> range is appreciably higher than it is in the substituted benzene, and interaction with a further vibration (presumably also CH in-plane bending) seems feasible.

Reassignment of Some Bands in the Amino-<sup>2b</sup> and Methoxy-pyridine <sup>2a</sup> Spectra.—In the light of the information now available several reassignments are necessary. Aminopyridines, 3-aminopyridinium ion, methoxypyridines and ions: prominent Raman band near 640 cm.<sup>-1</sup>, previously 4?, now 6b; 2-substituted compounds, previously 9a, now 9b; 3-substituted compounds, previously 9a, now 3? Aminopyridines and 3-aminopyridinium ion: prominent Raman bands, near 550 cm.<sup>-1</sup>, previously unassigned, now 6a/S; near 1270 cm.<sup>-1</sup>, previously unassigned, now S/18 I; near 850 cm.<sup>-1</sup>, previously 5, now S/18 II (N.B. This reassignment does not apply to the cations of 2- and 4-aminopyridine or to 2- and 4-pyridone). v<sub>14</sub> is probably 1400 cm.<sup>-1</sup> in the 4-mercapto-<sup>2c</sup> and 1383 cm.<sup>-1</sup> in the 4-methylthio-pyridinium ion, 731 cm.<sup>-1</sup> now C<sub>ar</sub>-S st/C<sub>Me</sub>-S st/6a.

Methoxypyridines and ions: prominent Raman band near 450 cm.<sup>-1</sup>, previously 16, now 6a/S. 3-Methoxypyridinium ion, 1612 cm.<sup>-1</sup> now 8b, 1552 cm.<sup>-1</sup> now 19a. 4-Methoxypyridinium ion, 1530 cm.<sup>-1</sup> now 19a, 1512 cm.<sup>-1</sup> now 19b. The "S/18" vibrations in the methoxy-compounds are more complicated; vibration 18a (18b in the 2-substituted compound) mixes with  $C_{ar}$ -O and  $C_{Me}$ -O stretching; this gives rise to three mixed vibrations, near 810, 1020, and 1290 cm.<sup>-1</sup> (previously assigned to  $v_5$ , COC symmetric, and COC antisymmetric stretching, respectively). In spectra of 2-methoxypyridine and its ion the high-frequency band is split (conceivably by interaction with  $v_3$ ), the band near 1320 cm.<sup>-1</sup> (previously assigned to  $v_3$ ) being the major component. These reassignments become necessary in the light of recent data <sup>16c, 23</sup> for anisole.

\* Benzene ring-vibration frequencies lower than  $340 \text{ cm}^{-1}$  do not seem credible (though they have been proposed occasionally <sup>16</sup>).

<sup>&</sup>lt;sup>23</sup> Stephenson, Coburn, and Wilcox, Spectrochim. Acta, 1961, 17, 933.

## SUBSTITUENT AND RELATED EFFECTS

The Effect of Cation Formation on the Vibration Spectra.—As observed previously for pyridine,<sup>1</sup> the methoxypyridines, 3-hydroxy-<sup>1</sup> and 3-amino-pyridine (but not 2- and 4aminopyridine, the anomalous behaviour <sup>2b</sup> of which is thereby strikingly demonstrated), cation formation produces only minor changes in the vibration frequencies, and, in the Raman spectrum, relative band intensities also undergo comparatively little change. The high-frequency skeletal stretching frequencies are, in general, appreciably raised in the cations;  $v_1$  is raised to a much smaller extent, as are the X-sensitive 18/S/6a bands. Cation formation of 2-substituted pyridines considerably reduces the intensity of the Raman band due to  $v_1$ ; for the 3-substituted pyridines it reduces the frequency  $v_{11}$  by 25—30 cm.<sup>-1</sup>.

Substituent Effects on Vibration Frequencies in Pyridinium Ions.—Aromatic frequencies may be affected by the mass of the substituent, strongly (Whiffen's "X-sensitive" group), appreciably (e.g.,  $\nu_{8a}$  and  $\nu_{19a}$  in 4-substituted pyridines are lowered by 30 cm  $^{-1}$ for the 4-iodo-compound), or hardly (if at all). In neutral pyridines the frequencies<sup>8</sup> (unlike some infrared band intensities<sup>8,24</sup>) are usually unaffected by the electronic effect of the substituent. In the ions, however, polar and conjugation effects might be expected to be more prominent, and a knowledge of these effects may be helpful in structural elucidation where the exact structure of an ion is uncertain. The results for the more prominent bands are summarised below (previous <sup>2</sup> results being taken into account).

Few frequencies are appreciably influenced by the polar effect of the substituent; those that are so influenced are normally raised by electron-donating groups, and vice versa. The reason for such shifts is not known; some frequencies in spectra of neutral pyridines,<sup>8</sup> however, are also affected in this manner. Substituents which conjugate strongly with the aromatic nucleus with consequent electron-delocalisation would be expected: (1) to reduce the average mobile bond order in the ring and thereby lower 1,2bthe skeletal frequencies  $v_8$ ,  $v_{19}$ ,  $v_{14}$ , and  $v_1$ ; and (2) to raise the  $C_{ar}$ -X bond order and thereby raise the intrinsic C-X stretching frequency and, hence, the S/6a and S/18 frequencies. In the comparisons between the vibration spectra of phenol<sup>25</sup> and the phenoxide ion<sup>18</sup> both these expectations are realised, but the frequency shifts are small (average for  $v_8$  and  $v_{19}$ , -19 cm.<sup>-1</sup>, for "S" frequencies, +15 cm.<sup>-1</sup>). Comparing monosubstituted benzenes with the corresponding monosubstituted pyridinium ions, for the substituents Me, Cl, Br, OMe, and CN, one finds (a) that the skeletal stretching frequencies in the ions are always raised and not lowered, and (b) that the frequencies of the "S" vibrations are always raised in the ions, but that this rise is not related to the conjugating ability of the sub-Thus the effects of electron delocalisation do not manifest themselves in these stituent. spectra.

Substituent Effects on the Relative Intensities of the Major Bands in Pyridinium Ion Spectra.—In general these effects are not very pronounced. Where there is an appreciable substituent effect, as in the relative intensities of the Raman bands of 2-substituted pyridinium ions, it is not very regular. Electron-withdrawing substituents in the latter ions cause some mixing between vibrations 8a and 8b, which confers appreciable Raman intensity on 8b; for the 2-chloro-derivative it has the unusual result of making 8a more intense than 8b in the infrared spectrum. In the 2- and 3-cyano-derivatives there is a specific substituent effect which greatly intensifies  $v_{8a}$  in the Raman spectrum.

The most intense vibrational bands, in general summary, are as follows. 4-Substituted pyridinium ions: Raman,  $v_1$  (most intense),  $v_{8a}$ , one of the "S" bands; infrared,  $v_{8a}$  or  $v_{19b}$ ,  $v_{11}$   $v_{8/18a \Pi}$  sometimes. 3-Substituted pyridinium ions: Raman,  $v_1$  (most intense),  $v_{12}$ , an "S" band; infrared,  $v_{11}$ ,  $v_{10b}$ ,  $v_{19a}$  ( $v_{19b}$  for cyano derivative). 2-Substituted

Katritzky, J., 1958, 4162.
 J. C. Evans, Spectrochim. Acta, 1960, 16, 1382.

## 4-Substituted pyridinium ions.

 $\nu_{8a}$ : slightly mass-sensitive.

 $\nu_{sb}$ : no substituent effect.

 $\nu_{193}$  (1535—1507 cm.<sup>-1</sup>): no regular substituent effect.

 $v_{19b}$ : somewhat mass-sensitive; raised somewhat by electron-donating groups (and vice versa).

 $v_{14}$ : raised somewhat by electron-donating groups.

 $\nu_{12}$ : no substituent effect.

 $\nu_1$ : no substituent effect.

## Frequencies of X-sensitive vibrations in $X \cdot C_5 H_5 N^+$ relative to those in $X \cdot C_6 H_5$ .

 $\nu_{X \text{ op be}}$  and  $\nu_{X \text{ ip be}}$ : very slightly raised; no regular substituent effect.

 $\nu_{S/6a}$  (I or  $\nu_{6a/8}$ : appreciably raised only if substituent is heavy.

 $\nu_{s_{6}I}$  or  $\nu_{s_{18a}II}$ : raised; rise is not correlated with the polar or conjugating effect of X.

 $\nu_{S/188 I}$  or  $\nu_{18/S}$ : raised by about 20 cm.<sup>-1</sup>.

#### 3-Substituted pyridinium ions.

 $\nu_{8a}$  and  $\nu_{8b}$ : slightly mass-sensitive.

 $\nu_{194}$  (1555–1518 cm.<sup>-1</sup>): mass-sensitive.

 $\nu_{19b}$  (1490—1455 cm.<sup>-1</sup>): raised by electron-donating substituents.

 $\nu_{14}$  raised by electron-donating substituents.

 $v_1$ : slightly raised by electron-donating substituents.

 $v_{12}$ : slightly lowered by electron-donating substituents.

## Frequencies of X-sensitive vibrations in $X \cdot C_5 H_5 N^+$ relative to those in $X \cdot C_6 H_5$ .

 $\nu_{\mathbf{X} \text{ op be}}$ : slightly raised; no regular substituent effect.

 $\nu_{\mathbf{X} \text{ ip be}}$ : unchanged.

 $\nu_{S/6a I1}$  or  $\nu_{6a/S}$ : raised; rise not determined by polar or conjugating effect of X.

 $\nu_{8/641}$  or  $\nu_{8/6411}$ : raised by 20—30 cm.<sup>-1</sup>; no regular substituent effect.  $\nu_{8/641}$  or  $\nu_{8/641}$ ; raised by 10—70 cm.<sup>-1</sup>; no regular substituent effect.

## 2-Substituted pyridinium ions.

 $\nu_{8a}$ ,  $\nu_{8b}$ ,  $\nu_{19a}$ ,  $\nu_{19b}$ : slightly mass-sensitive; tend to be raised by electron-donating substituents, but the correlation is not good.

 $\nu_{14?}$ : mass-sensitive.

 $\nu_{12}$  and  $\nu_1$ : no regular substituent effects.

Frequencies of X-sensitive vibrations in  $X \cdot C_5 H_5 N^+$  relative to those in  $X \cdot C_6 H_5$ .

 $\nu_{\mathbf{X} \text{ op be}}$ : hardly raised.

 $\nu_{x \, ip \, bc}$ : tends to be raised; no regular substituent effect.  $\nu_{s/ac11}$  or  $\nu_{as/s}$ : raised by 15—25 cm.<sup>-1</sup>; no regular substituent effect.  $\nu_{s/ac11}$  or  $\nu_{s/l_{1}b_{1}1}$ : raised by 12—30 cm.<sup>-1</sup>; rise increases with mass and perhaps with electron-donating effect of X.

 $\nu_{8/18bI}$  or  $\nu_{18b/8}$ : raised by 35-60 cm.<sup>-1</sup>; no regular substituent effect.

pyridinium ions: Raman,  $v_{12}$ ,  $v_1$ , one or more of the "S" bands, order of intensities variable, but all within a factor of about 1.5; infrared,  $v_{11}$  and  $v_{8h}$ .

C=N Stretching Bands of Cyano-derivatives.—These are quite weak in the infrared but very intense indeed in the Raman spectra. The frequencies are in the region expected <sup>26</sup> for cyano-groups attached to very strongly electron-withdrawing aromatic rings and are raised on cation formation.

 $N^+-H$  Bands in Pyridinium Chlorides.—Since the  $N^+-H$  vibrations appear to be independent of the CH vibrations, N<sup>+</sup>-H out-of-plane and N<sup>+</sup>-H in-plane bending bands, near 910 cm.<sup>-1</sup> and 1250 cm.<sup>-1</sup>, respectively,<sup>27</sup> are to be expected. 3- and 4-Substituted pyridinium ions show the band near 1250 cm.<sup>-1</sup>, but only the 2-methyl- and 2-methoxypyridinium ions 2a show the out-of-plane bending band. The N<sup>+</sup>-H stretching bands, by contrast, are very intense in the infrared spectra; their low frequencies show that there is strong hydrogen-bonding in the solids.

Some evidence concerning the type of hydrogen-bonding involved is obtained from the substituent effect on the N<sup>+</sup>-H stretching frequency. Amongst the methylpyridinium

<sup>26</sup> Kiston and Griffith, Analyt. Chem., 1952, 24, 334; Thompson and Steel, Trans. Faraday Soc., 1956, 52, 1451; El-Sayed, J. Inorg. Nucl. Chem., 1959, 10, 168.
 <sup>27</sup> Spinner, J., 1963, 3870.

# Spinner: Vibration-spectral Band

chlorides the frequency is lowest (hydrogen-bonding strongest) for the 4-isomer; for all the other substituted pyridinium ions examined it is lowest for the 2-isomer. The principal difference between methyl on the one hand, and cyano, chloro, bromo, and methoxyl on the other, is that methyl cannot act as a hydrogen-bond acceptor whereas the others can. In the methylpyridinium chlorides the hydrogen-bonding must be cation-to-anion; in the others cation-to-cation bonding is possible. The latter has previously been proposed <sup>28</sup> for 2-bromopyridinium chloromercuriate, in which there is appreciable hydrogen bonding, although cation-to-anion bonding must be quite weak.



To account for the low N<sup>+</sup>-H stretching frequencies in 2-substituted pyridinium chlorides (other than 2-picolinium), hydrogen-bonded  $\sim$  cation pairs (e.g., as shown), are suggested. For this explanation to be acceptable, chlorine should be a stronger hydrogen-bond

acceptor than bromine; it is noteworthy therefore that West and his collaborators <sup>29</sup> have now concluded that this is so.

The strength of the NH<sup>+</sup> group as a hydrogen-bond donor will increase with the electron-withdrawing effect of the substituent. This might be considered to provide an adequate explanation for the low N<sup>+</sup>-H stretching frequencies in 2-substituted pyridinium ions, amongst which, indeed, the lowering of the frequency parallels the decrease in base strength of the pyridine. However, this correlation with ionisation constants <sup>17,30</sup> is less good for 3- and quite poor for 4-substituted pyridinium ions; it breaks down when 4and 3-substituted ions are compared with 2-substituted ones. For the last-mentioned a special effect, such as cation-to-cation bonding, is therefore indicated; weaker cation-tocation bonding in some of the other chlorides is not ruled out, but there is no positive indication of it.

The author thanks Mr. D. T. Light for technical assistance.

DEPARTMENT OF MEDICAL CHEMISTRY, INSTITUTE OF ADVANCED STUDIES, THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, AUSTRALIA. [Received, December 28th, 1962.]

<sup>28</sup> R. F. Evans and Kynaston, J., 1962, 1005.

<sup>29</sup> West, Powell, Whatley, Lee, and Schleyer, J. Amer. Chem. Soc., 1962, 84, 3221.
<sup>30</sup> Albert, "Heterocyclic Chemistry," Athlone Press, London, 1959, pp. 343-344; Mason, J., 1959, 1247.